Satakshi Gupta

About Satakshi

Satakshi has a Master of Applied Physics from Amity University Rajasthan; and a Bachelor of Physics from University of Rajasthan, where she was awarded a gold medal for academic achievement. She completed her dissertation at the Indian Institute of Technology in the field of nanofabrication and characterisation of piezoelectric materials.

Since graduating, she has worked as project assistant at the Department of Physics, Malaviya National Institute of Technology Jaipur. She is an avid researcher who has published multiple articles in reputable journals.

 

 

Project details

Unravelling the charge generation pathways in organic and hybrid solar cells

The next generation of solar cells based on organic and hybrid semiconductors can be solution processed over large areas leading to solar cells that are cheaper than current technology as well as being lighter and flexible. Current state-of-the-art performance for organic and hybrid solar cells are 16% and 25%, respectively. The key to this record performance has been the development of new materials and improved device architectures. However, understanding the photo-physical properties of these novel solar materials, in other words, the series of steps that need to occur for light to be converted into charge, remains a challenge. The aim of this project is to use time-resolved spectroscopy to probe the photo-physical properties of materials for organic and hybrid solar cells. The use of time-resolved optical spectroscopy is critical as the charge generation processes occur on very short timescales that cannot typically be observed from electrical measurements. Specifically, transient absorption and time-resolved terahertz spectroscopy will be employed to probe the formation and recombination of charge carriers on timescales from the femtosecond to the microsecond. The use of time-resolved spectroscopy will provide unique insights into the mechanism of charge generation in the next generation of solar cells, which in turn will guide the design of future materials and more efficient solar cells.

View full project details
UQ Supervisor

Dr Paul Shaw

School of Chemistry and Molecular Biosciences
IITD Supervisor

Associate Professor Sunil Kumar

Department of Physics